Multiple Imputation of Missing Values: New Features for Mim

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Imputation of Missing or Faulty Values Under Linear Constraints

Many statistical agencies, survey organizations, and research centers collect data that su↵er from item nonresponse and erroneous or inconsistent values. These data may be required to satisfy linear constraints, e.g., bounds on individual variables and inequalities for ratios or sums of variables. Often these constraints are designed to identify faulty values, which then are blanked and imputed...

متن کامل

Multiple Imputation of Missing Poverty Level Values (June, 2007)

The authors wish to thank Nathaniel Schenker and Pei-Lu Chiu, whose detailed reviews and comments helped us to make many improvements to this report. In addition, special thanks to Dr. Schenker for permission to borrow text from his report (with Trivellore E. Raghunathan, Pei-Lu Chiu, Diane M. Makuc, Guangyu Zhang, and Alan J. Cohen) on the multiple imputation of family income and personal earn...

متن کامل

Multiple Imputation of Missing Values in Software Measurement Data

The value of knowledge inferred from information databases is critically dependent on the quality of data. We present multiple imputation as a reliable and consistent imputation technique for handling missing data in a numeric dependent variable in software metrics data sets. Experiments were conducted using multiple, mean, k-Nearest Neighbors, regression, and REPTree to impute missing values i...

متن کامل

Missing Values with iterative imputation

In this paper, the author designs an efficient method for imputing iteratively missing target values with semiparametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in e...

متن کامل

Multiple Imputation for Missing Data

Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata

سال: 2009

ISSN: 1536-867X,1536-8734

DOI: 10.1177/1536867x0900900205